# The Structures of 4,4'-Dichloro-3,3'-ethylenebis-sydnone and 3,3'-Ethylenebis-sydnone

BY HÅKON HOPE AND W. E. THIESSEN\*

Department of Chemistry, University of California, Davis, California 95616 U.S.A.

(Received 20 June 1968)

The crystal structures of 4,4'-dichloro-3,3'-ethylenebis-sydnone (I) and 3,3'-ethylenebis-sydnone (II) have been determined by Fourier and full-matrix least-squares methods. Diffraction data (Cu  $K\alpha$ ) were obtained by use of a Picker automatic diffractometer. Crystals of I are orthorhombic with  $a = 13 \cdot 109$  (6),  $b = 21 \cdot 863$  (5),  $c = 6 \cdot 747$  (3) Å, space group *Pbca*, with eight molecules per unit cell. Crystals of II are orthorhombic,  $a = 17 \cdot 397$  (3),  $b = 7 \cdot 364$  (4),  $c = 12 \cdot 582$  (6) Å, space group *Fdd2*, with eight molecules per unit cell. R for I (1312 reflections) is 0.042, and R for II (449 reflections) is 0.024. Bond distances and angles were corrected for anisotropic thermal motion effects. Estimated standard deviations in bond distances in the sydnone ring are 0-N, 1.39; N-N, 1.32; N-C, 1.34; C-C, 1.40; C-O, 1.41 Å. The carbonyl C-O distance is 1.22 Å. The angle C-C=O is 136° and the angle O-C=O is 120°. The C-Cl distance in I is 1.68 Å. All bonds involving ring atoms are coplanar.

The formulation



is proposed as the best single formula representation of a sydnone.

## Introduction

Sydnones are the products of dehydration of N-nitrosoa-amino acids, named after the site of their discovery at the University of Sydney (Earl & Mackney, 1935). Since the early realization that the bicyclic structure I (Fig. 1) was unlikely, the sydnones along with similar substances have been classed as 'mesoionic' compounds (Baker & Ollis, 1957) for which no satisfactory covalent cyclic structure can be written which does not involve separation of charge. Of the two most common representations II and III, Baker & Ollis have preferred formula III which emphasizes the aromatic nature of the sydnone ring and reflects the low bond order for the carbonyl group obtained in several molecular orbital calculations which assume a regular  $\sigma$  framework (for leading references see Kier & Roche, 1966).

\* Present address: Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.



Fig.1. Conventional structural formulas for sydnones.

The inconsistency between this picture and the high carbonyl stretching frequency has been stressed by Yashunskii and co-workers (Яшунский. Васильева & Шейнкер, 1959). The results of the crystal structure determination of 3-p-bromophenylsydnone (Fig. 1, R=p-BrC<sub>6</sub>H<sub>4</sub>, X=H) by Bärnighausen, Jellinek, Munnik & Vos (1963) are also difficult to reconcile with III, as nothing unusual about the carbonyl C-O distance was noted. However, these workers observed a 'remarkable distortion' of the bond angles around the carbonyl group (the C-C=O angle was reported to be 135.7° and the O-C=O angle 119.2°) and ascribed it to an intermolecular 'charge transfer interaction' between the carbonyl oxygen and a neighboring bromine atom 3.16 Å distant.

It seemed likely to us that the observed distances and angles were inherent properties of the sydnone system rather than being the result of such a relatively weak interaction. In order to gain insight into the nature of the bonding in these 'mesoionic' systems, we undertook the study of some representative sydnones.

We chose for study 4,4'-dichloro-3,3'-ethylenebissydnone and 3,3'-ethylenebis-sydnone (Fig. 1,  $R = CH_2$ , X = Cl or H respectively, molecule dimeric), hereafter referred to as Cl-sydnone and H-sydnone respectively. They are solids for which straightforward syntheses have already been published (Daeniker & Druey, 1957), whose aromatic systems are unperturbed by other conjugation, and whose dimeric nature assured either a duplicate determination of the molecular geometry or a symmetry element which might prove useful in the solution of the structure.

Our conclusions on the bonding in the Cl-sydnone have been published in a preliminary communication (Thiessen & Hope, 1967) in which we proposed that sydnones are characterized by delocalization of electrons in the plane of the ring as well as perpendicular to it. Since it could be argued that the large C-C=O angle which we observed in Cl-sydnone might have been affected by an intramolecular interaction between chlorine and carbonyl oxygen we solved and now report the structure of the parent H-sydnone as well.

#### Experimental

# Cl-sydnone

Crystals of Cl-sydnone were grown from an acetone solution. Approximate cell dimensions, crystal system and space group extinction rules were derived from precession and Weissenberg photographs. During the preliminary investigations it was found to be necessary to coat the crystals in order to minimize interaction with the atmosphere, either through evaporation or chemical reaction resulting from X-ray exposure. The coating consisted of a thin layer of Wilhold's white glue ('Glu-Bird') which was applied by dipping the crystal into a drop of the glue thinned with water. In order to avoid later difficulties and disappointments we have found the following procedure to be of value. A sample crystal is mounted on a precession camera, and continuously exposed to X-rays. Timed exposures of Polaroid film are made at regular intervals, for example once a day; signs of deterioration of the crystal can thereby be detected.]

The crystal used for intensity measurements was shaped to an approximate sphere of diameter 0.17 mm by cutting; its edges were then rounded by dipping the crystal in acetone. Accurate cell dimensions and crystal orientation parameters were obtained from  $\chi, \varphi$  and  $2\theta$ angles measured for about ten reflections on a Picker diffractometer equipped with a full-circle goniostat. The cell dimensions resulting from a least-squares calculation, together with other crystallographic data, are given in Table 1.

The intensities of 2096 reflections accessible below  $2\theta = 160^{\circ}$  were measured with the diffractometer in automatic mode, using the  $2\theta - \theta$  scan technique with a scan speed of 2° min<sup>-1</sup> and with background measurements taken at both ends of the scan range. Nickel filtered CuK $\alpha$  radiation was used with a scintillation detector and pulse height analyzer counting device. The count rate was kept below 10<sup>4</sup> counts per second with an automatic attenuator mechanism. Measurements of one check reflection were repeated at regular intervals. The intensity of this reflection showed a slight, gradual decline during the data collection period, at the end of which the intensity amounted to about 92% of its initial value. The instability of the compound under irradiation was the reason for selecting the relatively high scan speed, which in turn resulted in poor counting statistics for a large number of reflections.

The intensities were corrected for Lorentz and polarization effects. The expression

$$s(N) = N^{1/2} + 0.005N$$

was used to obtain an estimated standard deviation for a recorded number of counts. Reflections for which the intensity was less than three times its standard deviation were recorded as 'unobserved', and were not included in subsequent calculations. The resulting number of 'observed' reflections was 1312.

# H-sydnone

The H-sydnone was found to have a very low solubility in all solvents tested and it was difficult to grow single crystals. The best results were obtained with methanol, but even in that case crystals developed in the form of flakes with dendritric growths. The crystals were found to be stable in air without further precautions.

Crystal data were obtained as described above. A diamond-shaped single crystal with diagonal dimensions 0.37 and 0.20 mm and thickness 0.05 mm was cut from a plate and mounted with its long direction approximately parallel to the goniostat  $\varphi$  axis. With the exception of the scan speed, which was 1° min<sup>-1</sup>,

Table 1. Crystallographic data for Cl-sydnone and H-sydnone

| Cell dimensions (Å)                      | 4,4'-Dichloro-<br>3,3'-ethylenebis-sydnon<br>a 13·109 (6)<br>b 21·863 (5)<br>c 6·747 (3) | e 3,3'-Ethylenebis-sydnone<br>17·397 (3)<br>7·364 (4)<br>12·582 (6)                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Systematically<br>absent reflections     | 0kl  k=2n+1<br>h0l  l=2n+1<br>hk0  h=2n+1                                                | $ \begin{array}{l} hkl \text{ not all } even \text{ or all } odd \\ 0kl \ k+l \neq 4n \\ h0l \ h+l \neq 4n \end{array} $ |
| Space group                              | Pbca                                                                                     | Fdd2                                                                                                                     |
| Formula units per unit cell              | 8                                                                                        | 8                                                                                                                        |
| Calculated density (g.cm <sup>-3</sup> ) | 1.83                                                                                     | 1.63                                                                                                                     |
| Observed density (g.cm <sup>-3</sup> )   | 1.83                                                                                     | 1.59                                                                                                                     |

intensity measurements were carried out as for the Cl-sydnone.

All 449 reflections scanned were recorded as 'observed'. Of these, 20 had a net intensity of less than three times the standard deviation.

#### Solution and refinement of the structures

#### Cl-sydnone

The structure was solved by the heavy atom method. Positional parameters of the two chlorine atoms in the asymmetric unit were determined from a sharpened three-dimensional Patterson function. A Fourier synthesis calculated by use of the signs of the Cl contributions revealed the positions of all atoms other than hydrogen. The parameters of these atoms, including anisotropic temperature factors, were refined by full-matrix least-squares methods. A difference map computed when the R index was 0.065 showed the four hydrogen atoms near their calculated positions. Inclusion of the H atoms changed R to 0.055.

At this point it was apparent that the strongest reflections suffered secondary extinction effects. It was decided to attempt a correction for this by the method of Zachariasen (1963). In order to test the program used, calculations were first done on the hk0 reflections only, for which a very marked improvement was seen in the correlation between observed and calculated structure factors (for example, R decreased from about 0.05 to 0.031).

When the complete data set was processed in this way we did not find the result to be nearly so convincing. The strong observed structure factors in the hk0layer were not increased sufficiently, while for the layers hk1 and hk2 an overcompensation took place. It then occurred to us that the low angle hk0 reflections had been measured at the beginning of the run while the lower angle  $hk_1$  and  $hk_2$  reflections were measured within a relatively short period of time at a later stage, and it appeared possible that the mosaic spread or the crystallite size could have changed as a result of X-ray exposure. Unfortunately, for this data set, only one check reflection, of medium intensity, had been used, so there is no direct evidence for this assumption. (However, in at least one other instance we have observed a very significant increase in intensity with exposure time for an extremely intense check reflection, while a nearby medium intensity reflection showed no systematic drift.)

These considerations led us to carry out the secondary extinction corrections separately on the hk0 reflections in one group and the hk1 and hk2 reflections in another. The remaining layers were left as originally measured. The constant C (vide infra) was determined to be  $5.5 \times 10^{-6}$  for the hk0 reflections, and  $1.3 \times 10^{-6}$ for the hk1 and hk2 reflections.

In the early stages of the least-squares refinement the weighting scheme of Hughes (1941) was used. Following the secondary extinction correction the weights were made proportional to  $1/\sigma^2(F)$ , and a few least-

squares cycles were carried out, refining all positional and thermal parameters, with isotropic temperature factors for hydrogen. The refinement was concluded when the shift was less than one-fifth of the estimated standard deviation for all parameters. The final parameters and their estimated standard deviations are listed in Tables 2, 3, and 4, and a comparison of observed and calculated structure factors is given in Table 8. The value of the R index is 0.042.

Table 2. Cl-sydnone

Positional parameters (with estimated standard deviations) for Cl, O, N and C.

|        | 0., 0      | , und C.   |            |
|--------|------------|------------|------------|
|        | x          | У          | z          |
| O(1)   | 0.3871 (2) | 0.4639 (1) | 0.9305 (4) |
| N(2)   | 0.4339 (2) | 0.4622(1)  | 0.7469 (6) |
| N(3)   | 0.3652 (2) | 0.4369 (1) | 0.6305 (5) |
| C(4)   | 0.2780 (2) | 0.4225(1)  | 0.7214 (6) |
| C(5)   | 0.2876 (3) | 0.4400(2)  | 0.9210 (7) |
| C(6)   | 0.3900 (3) | 0.4330 (2) | 0.4181 (7) |
| Cl(7)  | 0.1737 (1) | 0.3919 (0) | 0.6181(2)  |
| O(8)   | 0.2321 (2) | 0.4393(1)  | 1.0642 (5) |
| O(11)  | 0.3571 (2) | 0.2475(1)  | 0.4187 (5) |
| N(12)  | 0.3555 (2) | 0.3108(1)  | 0.4069 (7) |
| N(13)  | 0.4511 (2) | 0.3255 (1) | 0.3969 (5) |
| C(14)  | 0.5146 (2) | 0.2779 (2) | 0.3990 (6) |
| C(15)  | 0.4561 (3) | 0.2250(2)  | 0.4129 (6) |
| C(16)  | 0.4786 (3) | 0.3908 (2) | 0.3751 (8) |
| Cl(17) | 0.6412 (1) | 0.2854 (0) | 0.3820 (2) |
| O(18)  | 0.4721 (2) | 0.1703 (1) | 0.4200 (5) |

# H-sydnone

With eight molecules per unit cell in space group *Fdd2* the molecules are required to have a twofold axis. a fact which greatly facilitated the solution of the structure. Approximate x and y coordinates of the 'heavy' atoms were readily derived, mainly from the (u, v, 0) section of a sharpened Patterson function, and since the geometry of the ring was known, relative z coordinates could be assigned with reasonable confidence. The observation that the 0,0,12 reflection was very strong, indicating that in the c direction atoms are separated by about c/12, or 1 Å, was also helpful in the estimation of initial z coordinates. In order to use the equivalent positions as given in International Tables for X-ray Crystallography (1952) the orientation of the molecule compatible with these positions was determined by calculating intermolecular distances for the two possible (enantiomeric) orientations of the molecule relative to the c axis. The parameters arrived at in this manner, together with an overall isotropic temperature coefficient B of 4 Å<sup>2</sup>, gave an R index of 0.42. The heavy atom parameters, including anisotropic temperature factors were refined by full-matrix leastsquares methods, initially with the Hughes weighting scheme. The origin was defined by keeping the z coordinate of O(1) constant.

The three hydrogen atoms were not included in the calculation until the R index was about 0.05, at which stage they were placed in calculated positions and assigned a B of 4 Å<sup>2</sup>. The addition of the hydrogen atoms

Table 3. Cl-sydnone. Anisotropic thermal parameters and their estimated standard deviations

|               | $B_{11}$   | <b>B</b> <sub>22</sub> | B <sub>33</sub> | $B_{12}$   | B <sub>13</sub> | B <sub>23</sub> |
|---------------|------------|------------------------|-----------------|------------|-----------------|-----------------|
| <b>O</b> (1)  | 4.30 (12)  | 4.14 (13)              | 4.78 (17)       | -0.24(10)  | -0.56(12)       | -0.83(12)       |
| N(2)          | 3.36 (13)  | 3.45 (13)              | 5.54 (20)       | -0·45 (11) | -0.72(14)       | -0.68(16)       |
| N(3)          | 2.85 (11)  | 2·44 (12)              | 4·72 (18)       | 0.18 (9)   | -0.32(13)       | -0.11(13)       |
| Č(4)          | 2·50 (13)  | 2·83 (14)              | 4.74 (22)       | 0.10(12)   | -0.02(15)       | -0.16(16)       |
| C(5)          | 3.60 (16)  | 2.81 (15)              | 5.20 (25)       | 0.45 (13)  | -0.23(18)       | -0.23(18)       |
| C(6)          | 3.54 (15)  | 3.15 (16)              | 4.42 (24)       | 0.13(13)   | 0.27 (16)       | 0.33 (19)       |
| <b>CÌ</b> (7) | 2.66 (3)   | 4.52 (4)               | 5.71 (6)        | -0.56(3)   | -0.40(4)        | -0.52(5)        |
| O(8)          | 5.12 (14)  | 5.21 (15)              | 5.19 (17)       | 0.47 (12)  | 0.86 (13)       | -0.53(14)       |
| O(11)         | 3·04 (9) ́ | 3.10 (10)              | 11.43 (25)      | -0.18(10)  | 1.10 (15)       | -0.20(16)       |
| N(12)         | 2.70 (12)  | 3.34 (14)              | 11.76 (31)      | 0.01 (10)  | 0.93 (19)       | -0.03(20)       |
| N(13)         | 2.78 (11)  | 3.17 (12)              | 4.65 (17)       | -0.12(10)  | 0.36 (14)       | -0.34(14)       |
| C(14)         | 2.77 (13)  | 3.52 (15)              | 4.52 (22)       | 0.36 (12)  | 0.21 (16)       | -0.26(17)       |
| C(15)         | 3.28 (14)  | 3.68 (16)              | 4.89 (24)       | 0.21 (13)  | 0.20 (17)       | -0.02(19)       |
| C(16)         | 3.51 (16)  | 3.32 (16)              | 5.30 (26)       | -0.39(14)  | 0.64(20)        | -0.43(21)       |
| Cl(17)        | 2.37 (3)   | 4.92 (5)               | 13.41 (12)      | 0.33 (4)   | 0.16 (6)        | -0.43(7)        |
| O(18)         | 4.80 (13)  | 3.11 (11)              | 7.38 (19)       | 0.50 (10)  | 0.63 (15)       | 0.14 (14)       |

Table 4. Cl-sydnone. Positional and isotropic thermal parameters (with estimated standard deviations)for the H atoms

|       | x           | У           | Z           | В         |
|-------|-------------|-------------|-------------|-----------|
| H(9)  | 0:3202 (26) | 0.4210(15)  | 0.3493 (54) | 2.28 (90) |
| H(10) | 0.4040 (26) | 0.4760 (17) | 0.3754 (56) | 0.64 (94) |
| H(19) | 0.5341 (27) | 0.3982(17)  | 0.4628 (58) | 2.34 (99) |
| H(20) | 0.4957 (28) | 0.3935 (17) | 0.2327 (58) | 2.04 (99) |

lowered R to 0.035 without refinement. About ten high intensity reflections showed obvious symptoms of secondary extinction. An attempt to correct for this effect gave quite satisfactory results (with  $C = 1.3 \times 10^{-6}$ ) for all reflections with the exception of 022, where  $F_{obs}$ was about 7% less than  $F_{calc}$ . This reflection was given zero weight in subsequent calculations. The final stages of the least-squares refinement were carried out with weights for  $\Delta F$  proportional to  $1/\sigma(F)$ . The final shifts were all less than one-fifth of the corresponding standard deviations. The final parameters and their estimated standard deviations are given in Tables 5, 6, and 7. A comparison of observed and calculated structure factors is given in Table 9. The value of the R index is 0.024.

## Table 5. H-sydnone. Positional parameters (with estimated standard deviations) for O, N and C

|      | x          | У          | Z          |
|------|------------|------------|------------|
| O(1) | 0.1515 (1) | 0.2273 (2) | 0.3300 (0) |
| N(2) | 0.1250 (1) | 0.1430(3)  | 0.4204(2)  |
| N(3) | 0.0507(1)  | 0.1695 (2) | 0.4171(2)  |
| C(4) | 0.0260(1)  | 0.2633(3)  | 0.3334 (2) |
| C(5) | 0.0908 (1) | 0.3067 (3) | 0.2729 (2) |
| C(6) | 0.0042(1)  | 0.1014 (3) | 0.5064 (2) |
| O(8) | 0.1042 (1) | 0.3902 (3) | 0.1918 (2) |

#### **Computing procedures**

All calculations were performed on an IBM 7044 computer, for the most part using programs listed elsewhere (Hope & Christensen, 1968).

The least-squares program minimizes the quantity  $S = \Sigma w(K \cdot F_o - G | F_c |)^2$  by a full-matrix routine. G is

one of the adjustable parameters, which is reset to its original value by changing K after each cycle. Estimated standard deviations were obtained from the expression  $(a_{ii} \text{ S}/m)^{1/2}$ , where  $a_{ii}$  is the diagonal element in the inverse normal equation matrix, and m is the difference between the number of observations and the number of parameters adjusted.

The isotropic temperature factor is of the form  $\exp(-B \sin^2 \theta/\lambda^2)$ , and the anisotropic is of the form  $\exp(-B_{11}a^{*2}h^2/4 - B_{22}b^{*2}k^2/4 - B_{33}c^{*2}l^2/4 - B_{12}a^*b^*hk/2 - B_{13}a^*c^*hl/2 - B_{23}b^*c^*kl/2)$ . The atomic form factors were those given by Hanson, Herman, Lea & Skillman (1964). The *R* index is defined by  $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ .

The secondary extinction correction program, written by A.T. Christensen, applies the correction in the form  $F_{\text{corr}} = F_{\text{obs}} (1 + C\beta J_{\text{obs}})^{1/2}$  (Zachariasen, 1963), where C is a constant, and  $\beta$  equals  $2(1 + \cos^4 2\theta)/2$ 

$$(1 + \cos^2 2\theta)^2$$
.  $\frac{dA^*/d\mu r}{dA_0^*/d\mu r}$ . For Cl-sydnone the values used

for  $\frac{dA^*}{dA_0^*}$  were those for a sphere of diameter 0.17 mm,

while for H-sydnone a constant value of 1.0 was used.

#### Description of the structures

Packing diagrams of the crystal structures of Cl-sydnone and H-sydnone are presented in Figs. 2 and 3, and molecular geometry parameters are given in Figs. 4 and 5. The uncorrected distances and angles were calculated from the positional parameters listed in Tables 2,4,5, and 7, while corrected distances and angles

Table 6. H-sydnone. Anisotropic thermal parameters and their estimated standard deviations

|      | $B_{11}$ | B <sub>22</sub> | B <sub>33</sub> | $B_{12}$  | <i>B</i> <sub>13</sub> | B <sub>23</sub> |
|------|----------|-----------------|-----------------|-----------|------------------------|-----------------|
| O(1) | 2.81 (5) | 4.25 (7)        | 4.23 (7)        | -0.01(5)  | 0.63 (6)               | 0.22 (6)        |
| N(2) | 2.89 (7) | 4.22 (8)        | 4.26 (10)       | 0.51 (6)  | 0.12(7)                | 0.66 (7)        |
| N(3) | 2.60 (6) | 2.57 (6)        | 3.16 (7)        | -0.05(5)  | 0.03 (6)               | -0.25(6)        |
| C(4) | 2.68(6)  | 3.60 (9)        | 3.74 (10)       | -0.29(7)  | -0.33(7)               | 0.42 (8)        |
| C(5) | 3.21 (7) | 3.64 (8)        | 3.23 (9)        | -0.71(7)  | -0.20(7)               | -0.21(7)        |
| C(6) | 3.47 (8) | 3.05 (8)        | 2.96 (8)        | -0.21(7)  | 0.36 (7)               | -0.23(7)        |
| O(8) | 4.96 (9) | 6.46 (10)       | 3.53 (7)        | -1.90 (8) | -0.31(6)               | 1.25 (7)        |

 Table 7. H-sydnone. Positional and isotropic thermal parameters (with estimated standard deviations)

 for the H atoms

|       | x            | у           | Z           | В         |
|-------|--------------|-------------|-------------|-----------|
| H(7)  | -0.0276 (18) | 0.2891 (41) | 0.3290 (24) | 3.59 (69) |
| H(9)  | -0.0446 (13) | 0.1552 (28) | 0.5007 (17) | 1.16 (45) |
| H(10) | 0.0313 (14)  | 0.1288 (33) | 0.5681 (19) | 1.57 (52) |





Fig. 2. (a) Projection of the structure of Cl-sydnone along the c axis. (b) Projection of part of the structure along the a axis. Only molecules related through the b and c glides are shown.

# Table 8. Cl-sydnone. Observed and calculated structure factors The three columns in each group list k, $10F_o$ and $10F_c$ .

|  | <pre>n = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =</pre> | 1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 | <pre>- 2:00 - 2:01<br/>9 2:02 - 2:01<br/>9 2:02 - 2:01<br/>9 2:02 - 2:01<br/>12 2:00 0<br/>11 2:00 0<br/>11 2:00 0<br/>11 12 10 0<br/>12 12 12 12 12 12 12 12 12 12 12 12 12 1</pre> | 10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10< | 16 370<br>16 370<br>17 4 37<br>18 5 370<br>18 5 3 5 1102<br>18 5 5 5 5 5 1102<br>18 5 5 5 5 5 1 | $ \begin{array}{c} 181 \\ 197 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 2010 \\ 201$ | $ \begin{array}{c} 122 \\ 123 \\ 124 \\ 125 \\ 121 \\ 125 \\ 121 \\ 121 \\ 125 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 $ | <pre>610 - 360<br/>610 -</pre> | 14 0 1 2 2 3 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|--|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|--|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|

(given in parentheses) were derived from coordinates obtained by the method of Cruickshank (1961) following an analysis of the thermal motion of the molecules (Schomaker & Trueblood, 1968). The dimeric molecules were not expected to behave as rigid bodies, but the individual rings together with the atoms directly attached to them should do so to a good approximation For the Cl-sydnone the root mean square difference between 'observed'  $U_{ij}$  and those calculated from the rigid body model was about 0.002 Å<sup>2</sup>, and for the H-sydnone the difference was 0.0014 Å<sup>2</sup>, indicating a quite good fit. The magnitudes of the principal axes of the translational and librational tensors are listed in Table 11. For H-sydnone and one of the Cl-sydnone rings the maximum librational axis corresponds to a r.m.s. amplitude of about  $10^{\circ}$ , the direction in both cases being within ~20° of the direction of the N-C (ethylene) bond. The screw components were all small.

# Table 11. Principal components of rigid body translation and libration tensors

Columns 1 and 2 contain r.m.s. translational amplitudes (Å) and r.m.s. librational amplitudes (degrees), respectively, for atoms O(1)-O(8) of Cl-sydnone, columns 3 and 4 contain those for O(11)-O(18), and columns 5 and 6 contain those for H-sydnone.

| 0.24 | 4.9 | 0.23 | 10.1 | 0.20 | 8∙6 |
|------|-----|------|------|------|-----|
| 0.19 | 3.6 | 0.50 | 4.2  | 0.18 | 3.8 |
| 0.17 | 3.5 | 0.18 | 2.8  | 0.17 | 2.8 |

# Table 9. H-sydnone. Observed and calculated structure factors

The columns are  $h, k, l, 10F_o, 10F_c$ , the phase angle (°) and  $100/\sigma(F)$ .

| $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \mathbf$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Table 10. Least-squares planes

The normal equations are given. Deviations are in Å. Planes are defined by atoms given before slash (/). (1) and (2) are for Cl-sydnone, (3) is for H-sydnone.

- (1) -4.7563x + 19.8160y 1.4597z = 6.0004.
- Deviations: O(1), -0.007; (N2), 0.005; (N3), 0.000; C(4), -0.004; C(5), 0.007/C(6), 0.116; Cl(7), 0.038; O(8), 0.048.

(2) 
$$0.5957x + 1.1516y + 6.7307z = 3.3122$$
.

Deviations: O(11), 0.004; N(12), -0.004; N(13), 0.002; C(14), 0.000; C(15), -0.002/C(16), -0.052; Cl(17), -0.031; O(18), -0.008.

(3) 1.9660x + 6.2581y + 6.4778z = 3.8618.

Deviations: O(1), -0.004; N(2), 0.002; N(3), 0.001; C(4), -0.003; C(5), 0.004/ C(6), 0.061; H(7), 0.025; O(8), 0.027; H(9), 0.265. The equations of the least-squares planes defined by the two crystallographically independent rings of the Cl-sydnone and by the H-sydnone ring are given in Table 10, together with individual deviations of both cyclic and exocyclic atoms. The rings themselves are planar, the largest deviation being 0.007 Å, or about two standard deviations in the positional parameters, while most of the exocyclic atoms are displaced outward from the center of the molecule by ten to twenty standard deviations. The largest deviations (0.05-0.1 Å) are found in the methylene carbon atoms, indicating a slight bending of the N(3)–C(6) bond.

Comparative views of the two sydnones are shown in Fig. 6. While the H-sydnone is required to possess a twofold symmetry axis, no such restriction applies to the Cl-sydnone. Fig. 6(a) and (c) reflect the similarity in the torsion angles N(3)–C(6)–C(16)–N(13) in the two molecules: 73·4° for Cl-sydnone and  $68\cdot1°$  for H-sydnone. One of the rings in Cl-sydnone has essentially the same orientation with respect to the central C–C bond as that found in H-sydnone; the torsion angles N(2)–N(3)–C(6)–C(16) are  $66 \cdot 1^{\circ}$  and  $73 \cdot 1^{\circ}$  respectively. However, as is clearly seen from Fig.6(b), the other ring in Cl-sydnone is oriented differently, with the torsion angle N(12)–N(13)–C(16)–C(6) being only 14 \cdot 3^{\circ}. A torsion angle of about 60° makes one of the methylene C–H bonds coplanar with the ring, whereas a torsion angle of about 0° causes the central C–C bond and the ring to become coplanar.

The similarity found in the molecular geometry of three independent sydnone rings, together with the small estimated standard deviations, is sufficient to allow some general statements about this unusual ring system.

The rings are planar, and as pointed out in our previous communication (Thiessen & Hope, 1967) the ring O-N, N-N, N-C, and C-C distances are very close to corresponding bond distances found in other aromatic systems. However, the average ring C-O bond distance of 1.41 Å is very much longer than the C-O distance of 1.36 Å in furan (Bak, Christensen, Dixon, Hansen-Nygaard, Rastrup Andersen & Schott-







Fig. 3. (a) Projection of the structure of H-sydnone along the b axis. (b) Projection along the c axis.



Fig.4. (a) Interatomic distances in Cl-sydnone. Distances in parentheses have been corrected for anisotropic thermal motion effects. Estimated standard deviations are 0.004-0.006 Å for distances between C, N and O, 0.003 Å for C-Cl and 0.03-0.04 Å for C-H distances. (b) Bond angles. Angles in parentheses have been corrected for anisotropic thermal motion effects (given only if the correction exceeds 1  $\sigma$ ). Estimated standard deviations are about  $0.3^{\circ}$  for angles not involving H, about  $2^{\circ}$  if one H is involved, and about  $3^{\circ}$  for two H atoms.



Fig. 5. (a) Interatomic distances in H-sydnone. Distances in parentheses have been corrected for anisotropic thermal motion effects. Estimated standard deviations are 0.002-0.003 Å for distances between C, N and O, and 0.02-0.03 Å for C-H. (b) Bond angles. Angles in parentheses have been corrected for anisotropic thermal motion effects (given only if the correction exceeds 1  $\sigma$ ). Estimated standard deviations are 0.1-0.2° for angles not involving H, and 1-2° if H atoms are involved. Since the molecule possesses twofold symmetry, only the methylene carbon, C(16), is shown in addition to the half-molecule constituting the asymmetric unit.

länder, 1962). The exocyclic C=O distance (1.22 Å) lends no support to the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge on the ring, and a negative charge on the exocyclic oxygen.

In the Cl-sydnone, as we have already pointed out, the difference between the bond angles involving the exocyclic oxygen is unusually large. Since the same pattern is observed in the H-sydnone, we feel that this is an inherent property of the sydnone system rather than arising from the steric requirements of the chlorine atom.

In view of the experimental evidence that the sydnone ring is aromatic (Baker, Ollis & Poole, 1949) we find it useful to depart from the usual procedure of postulating a regular  $\sigma$  system and then feeding in the  $\pi$ -electrons. Instead we combine our observations of geometry with the assumed  $\pi$  system to postulate that an ordinary  $\sigma$  framework extends through the sequence O-N-N-C-C, whereas the  $\sigma$  component of the ring C-O bond has much less than normal weight. We suggest the formula



as the best single formula representation for the sydnone system.

We wish to emphasize that this representation of the carbonyl group is meant to indicate merely that the C=O bond is of normal double bond length; it may contain components of  $\pi$ -electron density both perpendicular to and in the plane of the ring.

Our observations do not yet permit us to answer the delicate question of the arrangement of the lone pair electrons on the exocyclic oxygen atom. In the hope of clarifying this point, we are investigating the structures of two types of compounds: molecular complexes with the carbonyl acting as donor group, and substances in which the acylimino (RCON=) moiety has been substituted for the carbonyl oxygen atom.

A literal interpretation of the suggested formula leads to a formal charge of +0.8 on N(3) and an equal negative charge distributed over the remaining ring atoms. We note with interest that this admittedly crude picture gives a calculated dipole moment of about 5 D, which is the same as that found experimentally for sydnones (Hill & Sutton, 1949).

The observed values of the two angles N–C–H (118°) and C–C–H (135°) in H-sydnone are such that even after allowance has been made for the standard deviations (2°) a sizable difference is indicated. A possible interpretation follows from the valence-shell electronrepulsion theory of Gillespie (1963). The electrons in the C-N bond will be displaced towards the relatively positive nitrogen and will repel the electron pair in the



Fig. 6. (a) Cl-sydnone viewed along the vector defined by the midpoints of N(3)-N(13) and C(6)-C(16) respectively. (b) Cl-sydnone viewed along the central C-C bond. (c) H-sydnone viewed along the twofold axis. (d) H-sydnone viewed along the central C-C bond.

C-H bond to a lesser degree than will the more evenly distributed electrons in the C-C bond, causing the C-C-H angle to be larger than the N-C-H angle.

A similar effect would be expected in the Cl-sydnone, and the angles N(13)-C(14)-Cl(17) and C(15)-C(14)-Cl(17) actually show a difference of about 7°; however, the corresponding angles at C(4) do not differ appreciably. A possible explanation of this dissimilar behavior arises from the difference in orientation of the two rings with respect to the ethylene group as described above. Cl(7) is 'eclipsed' with respect to one of the methylene hydrogen atoms, H(9), while Cl(17) is in the 'staggered' configuration relative to its neighboring methylene group.

The angles associated with the nitrogen-methylene carbon bond differ from each other by amounts  $(8-11^{\circ})$  which are commonly encountered in planar groups where an exocyclic atom is flanked by another exocyclic atom on one side but not on the other.

The C-Cl distance in Cl-sydnone (1.68 Å) is 0.06 Å shorter than the normal C(aromatic)-Cl distance (Palenik, Donohue & Trueblood, 1968). The charge distribution implied in our proposed formula leads to a situation in which considerable delocalization of the chlorine lone-pair electrons onto the positive nitrogen is to be expected with consequent shortening of the C-Cl bond.

All intermolecular distances found in both structures are normal with the exception of one between O(18) and Cl(7') which is 2.98 Å, or about 0.2 Å less than the sum of van der Waals radii. This contact does not seem to have any appreciable effect on the geometry around the carbonyl carbon. Financial support of this research by the National Science Foundation (NSF GP-6635) is gratefully acknowledged.

#### References

- Bak, B., Christensen, D., Dixon, W. B., Hansen-Ny-GAARD, L., RASTRUP ANDERSEN, J. & SCHOTTLÄNDER, M. (1962). J. Mol. Spectr. 9, 124.
- BAKER, W. & Ollis, W. D. (1957). Quart. Rev. Chem. Soc. London, 11, 15.
- BAKER, W., OLLIS, W. D. & POOLE, V. D. (1949). J. Chem. Soc. p. 307.
- Bärnighausen, H., Jellinek, F., Munnik, J. & Vos, A. (1963). Acta Cryst. 16, 471.
- CRUICKSHANK, D. W. J. (1961). Acta Cryst. 14, 896.
- DAENIKER, H. U. & DRUEY, J. (1957). Helv. chim. Acta, 40, 918.

EARL, J. C. & MACKNEY, A. W. (1935). J. Chem. Soc. p. 899.

- GILLESPIE, R. J. (1963). J. Chem. Education, 40, 295.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HILL, R. W. & SUTTON, L. E. (1949). J. Chim. Phys. 46, 244.
- HOPE, H. & CHRISTENSEN, A. T. (1968). Acta Cryst. B24, 375.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- KIER, L. B. & ROCHE, E. B. (1966). J. Pharm. Sci. 55, 807.
- PALENIK, G. J., DONOHUE, J. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 1139.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- THIESSEN, W. E. & HOPE, H. (1967). J. Amer. Chem. Soc. 89, 5977.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.
- Яшунский, В. Г., Васильева, В. Ф. & Шейнкер, Ю. Н. (1959). *Ж. Общ. Хим.* **29**, 2712.

Acta Cryst. (1969). B25, 1247

# The Crystal Structure of Tetronic Acid Derivatives. II. α, γ-Dimethyltetronic Acid

By J.L. LAWRENCE\* AND S.G.G. MACDONALD

Carnegie Laboratory of Physics, University of Dundee, Dundee, Scotland

(Received 7 May 1968 and in revised form 1 August 1968)

The structure of  $\alpha,\gamma$ -dimethyltetronic acid, C<sub>6</sub>H<sub>7</sub>O<sub>3</sub>, has been determined by obtaining the equation of the molecular plane by the method of Lawrence & MacDonald (*Acta Cryst.* (1968) A 24, 579), and refined by least-squares techniques in three dimensions. The molecule is very similar in structure to that of  $\alpha$ -methyltetronic acid, and the resonance across the OH-C=C-CO chain and the strong hydrogen bonding found in the latter are again present.

## Introduction

Tetronic acid derivatives occur in a wide range of natural products, and their importance is discussed in a previous paper (McDonald & Alleyne, 1963) in which the structure of  $\alpha$ -methyltetronic acid is described. The second member of the series to be investigated,  $\alpha,\gamma$ -dimethyltetronic acid (see Fig. 3) differs from the previous one only in the addition of a methyl group in the  $\gamma$  position. The molecule of  $\alpha$ -methyltetronic acid is planar, but it was believed that the carbon atom C(6)

<sup>\*</sup> Now at the Physics Department, The University, Stirling, Scotland.